КОНИЧЕСКИЕ СЕЧЕНИЯ: ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ - définition. Qu'est-ce que КОНИЧЕСКИЕ СЕЧЕНИЯ: ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est КОНИЧЕСКИЕ СЕЧЕНИЯ: ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ - définition

КРИВАЯ, КОТОРУЮ МОЖНО ПОЛУЧИТЬ КАК ПЕРЕСЕЧЕНИЕ КОНУСА И ПЛОСКОСТИ
Конические сечения; Фокус (в математике); Коника (геометрия)
  • right
  • Конические сечения: <span style="color:yellow;background-color:grey;">окружность</span>, <span style="color:red;background-color:lightgrey;">эллипс</span>, <span style="color:blue;background-color:lightgrey;">парабола</span> (плоскость сечения параллельна образующей конуса), <span style="color:green;background-color:lightgrey;">гипербола</span>.
  • Три основных конических сечения
  • <span style="color:#ff0000;">Эллипс (''e''=1/2)</span>, <span style="color:#00ff00;">парабола (''e''=1)</span> и <span style="color:#0000ff;">гипербола (''e''=2)</span> с фиксированными фокусом ''F'' и директрисой.
  • Эллипс (синий) как коническое сечение, разделяющее [[шары Данделена]]; директрисы эллипса (Df1 и Df2), его фокусы (f1 и f2) и эксцентриситет (e)
  • [[Теорема Паскаля]] для эллипса

КОНИЧЕСКИЕ СЕЧЕНИЯ: ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ      
К статье КОНИЧЕСКИЕ СЕЧЕНИЯ
Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу - как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу - как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.
Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.
Эллипс. Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат - большей и малой осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.
Гипербола. При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рис. 3,а. Расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1 и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно потравливая (т.е. отпуская) ее. Вторую ветвь гиперболы (P?V2Q?) мы вычерчиваем, предварительно поменяв ролями шпеньки F1 и F2.
Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рис. 3,б. Угловые коэффициенты этих прямых равны . (v1v2)/(V1V2), где v1v2 - отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F1F2; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 - ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном
от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.
Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.
Парабола. Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (2-я пол. 3 в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (6 в.). Расположим линейку так, чтобы ее край совпал с директрисой LL. (рис. 4), и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой - в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой LL?, так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, т.е. PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, - осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.
КОНИЧЕСКИЕ СЕЧЕНИЯ         
линии пересечения круглого конуса (см. Коническая поверхность) с плоскостями, не проходящими через его вершину. В зависимости от взаимного расположения конуса и секущей плоскости получают три типа конических сечений: эллипс, параболу, гиперболу.
Конические сечения         

линии, которые получаются сечением прямого кругового Конуса плоскостями, не проходящими через его вершину. К. с. могут быть трёх типов:

1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая - Эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.

2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая - Парабола, целиком лежащая на одной полости.

3) Секущая плоскость пересекает обе полости конуса; линия пересечения - Гипербола - состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.

С точки зрения аналитической геометрии К. с.- действительные нераспадающиеся Линии второго порядка.

В тех случаях, когда К. с. имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:

a11x2+2a12xy + a22y2 = a33.

Дальнейшие исследования таких (называемых центральными) К. с. показывают, что их уравнения могут быть приведены к ещё более простому виду:

Ах2 + Ву2= С, (1)

если за направления осей координат выбрать т. н. главные направления - направления главных осей (осей симметрии) К. с. Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение (1) определяет эллипс; если А и В разного знака, то - гиперболу.

Уравнение параболы привести к виду (1) нельзя. При надлежащем выборе осей координат (одна ось координат - единственная ось симметрии параболы, другая - перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:

y2 = 2рх.

К. с. были известны уже математикам Древней Греции (например, Менехму, 4в. до н. э.); с помощью этих кривых решались некоторые задачи на построение (удвоение куба и др.), оказавшиеся недоступными при использовании простейших чертёжных инструментов - циркуля и линейки. В первых дошедших до нас исследованиях греческие геометры получали К. с., проводя секущую плоскость перпендикулярно к одной из образующих, при этом, в зависимости от угла раствора при вершине конуса (т. е. наибольшего угла между образующими одной полости), линия пересечения оказывалась эллипсом, если этот угол -острый, параболой, если - прямой, и гиперболой, если - тупой. Наиболее полным сочинением, посвященным этим кривым, были "Конические сечения" Аполлония Пергского (около 200 до н. э.). Дальнейшие успехи теории К. с. связаны с созданием в 17 в. новых геометрических методов: проективного (французские математики Ж. Дезарг, Б. Паскаль) и в особенности координатного (французские математики Р. Декарт, П. Ферма).

При надлежащем выборе системы координат уравнение К. с. может быть приведено к виду:

y2 = 2px + λx2 (р и λ постоянные).

Если р ≠ 0, то оно определяет параболу при λ = 0, эллипс при λ < 0, гиперболу при λ > 0. Геометрическое свойство К. с., содержащееся в последнем уравнении, было известно уже древнегреческим геометрам и послужило для Аполлония Пергского поводом присвоить отдельным типам К. с. названия, сохранившиеся до сих пор: слово "парабола" (греческого parabole) означает приложение (т. к. в греческой геометрии превращение прямоугольника данной площади y2 в равновеликий ему прямоугольник с данным основанием 2p называлось приложением данного прямоугольника к этому основанию); слово "эллипс" (греческий élleipsis) - недостаток (приложение с недостатком), слово "гипербола" (греческий hyperbole) - избыток (приложение с избытком).

С переходом к современным методам исследования стереометрическое определение К. с. было заменено планиметрическими определениями этих кривых как геометрических мест на плоскости. Так, например, эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух данных точек (фокусов) имеет данное значение.

Можно дать другое планиметрическое определение К. с., охватывающее все три типа этих кривых: К. с.- геометрическое место точек, для каждой из которых отношение её расстояний до данной точки ("фокуса") к расстоянию до данной прямой ("директрисы") равно данному положительному числу ("эксцентриситету") е. Если при этом е < 1, то К. с.- эллипс; если е > 1, то - гипербола; если е = 1, то - парабола.

Интерес к К. с. всегда поддерживался тем, что эти кривые часто встречаются в различных явлениях природы и в человеческой деятельности. В науке К. с. приобрели особенное значение после того, как немецкий астроном И. Кеплер открыл из наблюдений, а английский учёный И. Ньютон теоретически обосновал законы движения планет, один из которых утверждает, что планеты и кометы Солнечной системы движутся по К. с., в одном из фокусов которого находится Солнце. Следующие примеры относятся к отдельным типам К. с.: параболу описывает снаряд или камень, орошенный наклонно к горизонту (правильная форма кривой несколько искажается сопротивлением воздуха); в некоторых механизмах пользуются зубчатыми колёсами эллиптической формы ("эллиптическая зубчатка"); гипербола служит графиком обратной пропорциональности, часто наблюдающейся в природе (например, закон Бойля - Мариотта).

Лит.: Александров П. С., Лекции по аналитической геометрии, М., 1968; Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959.

В. И. Битюцков.

Рис. к ст. Конические сечения.

Wikipédia

Коническое сечение

Кони́ческое сече́ние, или ко́ника, — пересечение плоскости с поверхностью прямого кругового конуса. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того, существуют вырожденные сечения: точка, прямая и пара прямых. Окружность можно рассматривать как частный случай эллипса. Кроме того, параболу можно рассматривать как предельный случай эллипса, один из фокусов которого бесконечно удалён.

Конические сечения могут быть получены как пересечение плоскости с двусторонним конусом

a 2 z 2 = x 2 + y 2 {\displaystyle a^{2}z^{2}=x^{2}+y^{2}} (в декартовой системе координат)

Здесь

a = tg θ {\displaystyle a=\operatorname {tg} \theta }
θ {\displaystyle \theta }  — угол между образующей конуса и его осью.

Если плоскость проходит через начало координат, то получается вырожденное сечение. В невырожденном случае,

  • если секущая плоскость пересекает все образующие конуса в точках одной его полости, получаем эллипс,
  • если секущая плоскость параллельна одной из касательных плоскостей конуса, получаем параболу,
  • если секущая плоскость пересекает обе полости конуса, получаем гиперболу.

Уравнение кругового конуса квадратично, стало быть, все конические сечения являются квадриками, также все квадрики плоскости являются коническими сечениями (хотя две параллельные прямые образуют вырожденную квадрику, которая не может быть получена как сечение конуса, но она может быть получена как сечение цилиндра — вырожденного конуса, и обычно считается «вырожденным коническим сечением»).

Qu'est-ce que КОНИЧЕСКИЕ СЕЧЕНИЯ: ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ - définition